How Normalized Difference Vegetation Index (NDVI) Trendsfrom Advanced Very High Resolution Radiometer (AVHRR) and Système Probatoire d'Observation de la Terre VEGETATION (SPOT VGT) Time Series Differ in Agricultural Areas: An Inner Mongolian Case Study

نویسندگان

  • He Yin
  • Thomas Udelhoven
  • Rasmus Fensholt
  • Dirk Pflugmacher
  • Patrick Hostert
چکیده

Detailed information from global remote sensing has greatly advanced our understanding of Earth as a system in general and of agricultural processes in particular. Vegetation monitoring with global remote sensing systems over long time periods is critical to gain a better understanding of processes related to agricultural change over long time periods. This specifically relates to sub-humid to semi-arid ecosystems, where agricultural change in grazing lands can only be detected based on long time series. By integrating data from different sensors it is theoretically possible to construct NDVI time series back to the early 1980s. However, such integration is hampered by uncertainties in the comparability between different sensor products. To be able to rely on vegetation trends derived from integrated time series it is therefore crucial to investigate whether vegetation trends derived from NDVI and phenological parameters are consistent across products. In this paper we analyzed several indicators of vegetation change for a range of agricultural systems in Inner Mongolia, China, and compared the results across different satellite archives. Specifically, we compared two of the prime NDVI archives—AVHRR OPEN ACCESS Remote Sens. 2012, 4 3365 Global Inventory Modeling and Mapping Studies (GIMMS) and SPOT Vegetation (VGT) NDVI. Because a true accuracy assessment of long time series is not possible, we further compared SPOT VGT NDVI with NDVI from MODIS Terra as a benchmark. We found high similarities in interannual trends, and also in trends of the seasonal amplitude and integral between SPOT VGT and MODIS Terra (r > 0.9). However, we observed considerable disagreements in NDVI-derived trends between AVHRR GIMMS and SPOT VGT. We detected similar discrepancies for trends based on phenological parameters, such as amplitude and integral of NDVI curves corresponding to seasonal vegetation cycles. Inconsistencies were partially related to land cover and vegetation density. Different pre-processing schemes and the coarser spatial resolution of AVHRR GIMMS introduced further uncertainties. Our results corroborate findings from other studies that vegetation trends derived from AVHRR GIMMS data not always reflect true vegetation changes. A more thorough understanding of the factors introducing uncertainties in AVHRR GIMMS time series is needed, and we caution against using AVHRR GIMMS data in regional studies without applying regional sensitivity analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Phenology in the Mongolian Plateau by Inter-Comparison of Global Vegetation Datasets

This study evaluates the performances of three global satellite datasets (Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Satellite pour l’ observation de la Terre (SPOT) of the Mongolian Plateau, where in situ observation is insufficient to assess vegetation dynamics on terrestrial systems. We give a comprehensive assessment of the hi...

متن کامل

Cross Comparison of Spot-4 Vegetation and Noaa-14 Avhrr

Spectral vegetation indices obtained from satellite sensors have been used to measure and monitor the Earth’s vegetative cover from local, regional, to global scales. The normalized difference vegetation index (NDVI) has been the most widely-used index and shown to correlate with green leaf area index, green biomass, and net primary productivity. The NDVI from the two sensors, National Oceanic ...

متن کامل

Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China

s: More than 20 techniques have been developed to de-noise time-series vegetation index data from different satellite sensors to reconstruct long time-series data sets. Although many studies have compared Normalized Difference Vegetation Index (NDVI) noise-reduction techniques, few studies have compared these techniques systematically and comprehensively. This study tested eight techniques for ...

متن کامل

Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements

This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG).We tried to estim...

متن کامل

SPOT VEGETATION for characterizing boreal forest fires

The potential of the recent SPOT VEGETATION (VGT) sensor for characterizing boreal forest Ž res was investigated. Its capability for hotspot detection and burned area mapping was assessed by analysing a series of VGT, NOAA/AVHRR, and Landsat TM images over a 1541 km2 Ž re that occurred in May 1998, in Alberta, Canada. VGT’s 1.65mm, short-wave infrared (SWIR) channel was capable of detecting the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012